# What is the value of 99 1

## Standard normal distribution

The following table shows the distribution function of the standard normal distribution. For selected z-values ​​the probability W (Zz) = (1-) is given that this or a smaller z-value occurs. The probability corresponds to the red (dark) area in the following figure (i.e. the integral of the density function from - to z). An exact calculation is possible with the statistical internet calculator.

Reading example: The table contains z-values ​​that are rounded to two places behind the decimal point: e.g. -2.03, 1.07 or 1.96. So that the table does not take up too much space, each z-value is split into two parts: Part 1 with the first decimal place (column 1) and Part 2 with the second decimal place (all following columns). We are looking for the probability that a maximum z-value of -2.03 occurs (part 1: -2.0; part 2: 0.03). In the row with z = -2.0 (first column) you will find the probability (1 -) = 0.0212 you are looking for in the column overwritten with 0.03.

z-values
(Part 1)
Part 2 of the z-value (2nd decimal place)
0,000,010,020,030,040,050,060,070,080,09
-2,90,00190,00180,00180,00170,00160,00160,00150,00150,00140,0014
-2,80,00260,00250,00240,00230,00230,00220,00210,00210,00200,0019
-2,70,00350,00340,00330,00320,00310,00300,00290,00280,00270,0026
-2,60,00470,00450,00440,00430,00410,00400,00390,00380,00370,0036
-2,50,00620,00600,00590,00570,00550,00540,00520,00510,00490,0048
-2,40,00820,00800,00780,00750,00730,00710,00690,00680,00660,0064
-2,30,01070,01040,01020,00990,00960,00940,00910,00890,00870,0084
-2,20,01390,01360,01320,01290,01250,01220,01190,01160,01130,0110
-2,10,01790,01740,01700,01660,01620,01580,01540,01500,01460,0143
-2,00,02280,02220,02170,02120,02070,02020,01970,01920,01880,0183
-1,90,02870,02810,02740,02680,02620,02560,02500,02440,02390,0233
-1,80,03590,03510,03440,03360,03290,03220,03140,03070,03010,0294
-1,70,04460,04360,04270,04180,04090,04010,03920,03840,03750,0367
-1,60,05480,05370,05260,05160,05050,04950,04850,04750,04650,0455
-1,50,06680,06550,06430,06300,06180,06060,05940,05820,05710,0559
-1,40,08080,07930,07780,07640,07490,07350,07210,07080,06940,0681
-1,30,09680,09510,09340,09180,09010,08850,08690,08530,08380,0823
-1,20,11510,11310,11120,10930,10750,10560,10380,10200,10030,0985
-1,10,13570,13350,13140,12920,12710,12510,12300,12100,11900,1170
-1,00,15870,15620,15390,15150,14920,14690,14460,14230,14010,1379
-0,90,18410,18140,17880,17620,17360,17110,16850,16600,16350,1611
-0,80,21190,20900,20610,20330,20050,19770,19490,19220,18940,1867
-0,70,24200,23890,23580,23270,22960,22660,22360,22060,21770,2148
-0,60,27430,27090,26760,26430,26110,25780,25460,25140,24830,2451
-0,50,30850,30500,30150,29810,29460,29120,28770,28430,28100,2776
-0,40,34460,34090,33720,33360,33000,32640,32280,31920,31560,3121
-0,30,38210,37830,37450,37070,36690,36320,35940,35570,35200,3483
-0,20,42070,41680,41290,40900,40520,40130,39740,39360,38970,3859
-0,10,46020,45620,45220,44830,44430,44040,43640,43250,42860,4247
-0,00,50000,49600,49200,48800,48400,48010,47610,47210,46810,4641
0,00,50000,50400,50800,51200,51600,51990,52390,52790,53190,5359
0,10,53980,54380,54780,55170,55570,55960,56360,56750,57140,5753
0,20,57930,58320,58710,59100,59480,59870,60260,60640,61030,6141
0,30,61790,62170,62550,62930,63310,63680,64060,64430,64800,6517
0,40,65540,65910,66280,66640,67000,67360,67720,68080,68440,6879
0,50,69150,69500,69850,70190,70540,70880,71230,71570,71900,7224
0,60,72570,72910,73240,73570,73890,74220,74540,74860,75170,7549
0,70,75800,76110,76420,76730,77030,77340,77640,77940,78230,7852
0,80,78810,79100,79390,79670,79950,80230,80510,80780,81060,8133
0,90,81590,81860,82120,82380,82640,82890,83150,83400,83650,8389
1,00,84130,84380,84610,84850,85080,85310,85540,85770,85990,8621
1,10,86430,86650,86860,87080,87290,87490,87700,87900,88100,8830
1,20,88490,88690,88880,89070,89250,89440,89620,89800,89970,9015
1,30,90320,90490,90660,90820,90990,91150,91310,91470,91620,9177
1,40,91920,92070,92220,92360,92510,92650,92790,92920,93060,9319
1,50,93320,93450,93570,93700,93820,93940,94060,94180,94290,9441
1,60,94520,94630,94740,94840,94950,95050,95150,95250,95350,9545
1,70,95540,95640,95730,95820,95910,95990,96080,96160,96250,9633
1,80,96410,96490,96560,96640,96710,96780,96860,96930,96990,9706
1,90,97130,97190,97260,97320,97380,97440,97500,97560,97610,9767
2,00,97720,97780,97830,97880,97930,97980,98030,98080,98120,9817
2,10,98210,98260,98300,98340,98380,98420,98460,98500,98540,9857
2,20,98610,98640,98680,98710,98750,98780,98810,98840,98870,9890
2,30,98930,98960,98980,99010,99040,99060,99090,99110,99130,9916
2,40,99180,99200,99220,99250,99270,99290,99310,99320,99340,9936
2,50,99380,99400,99410,99430,99450,99460,99480,99490,99510,9952
2,60,99530,99550,99560,99570,99590,99600,99610,99620,99630,9964
2,70,99650,99660,99670,99680,99690,99700,99710,99720,99730,9974
2,80,99740,99750,99760,99770,99770,99780,99790,99790,99800,9981
2,90,99810,99820,99820,99830,99840,99840,99850,99850,99860,9986

In many cases, however, the opposite question is of interest: The probability (1-) is known, and the associated z-value is sought. So what is needed is that inverse Distribution function. For this you have to read the previous table backwards, so to speak.

Reading example: We are looking for the z-value below which 95% of all possible z-values ​​lie. One searches for it in the table has a probability (1-) as close as possible to the value 0.95. In the table these are the values ​​0.9495 and 0.9505 with the z-values ​​1.64 and 1.65. The desired value z = 1.645 is obtained by interpolation. For some selected probabilities (1-), the following table shows the z-values ​​of the inverse distribution function Z (1-). An exact calculation is possible with the statistical internet calculator.

(red / dark) area (1-)
0,650,70,750,80,850,90,950,9750,990,995
Z-Value0,3850,5240,6740,8421,0361,2821,6451,9602,3262,576